文章专利

  • 地址: 江苏省苏州市苏州工业园区若水路398号
  • 邮箱: tzhang2009@sinano.ac.cn
  • 电话: 86-512-62872706
  • 传真: 0512-62603079
  • 网址: http://nanosensor.sinano.ac.cn
  1. 首页
  2. 文章

Zhigang Chen, Lianhui Li, Shan Cong, Jinnan Xuan, Dengsong Zhang, Fengxia Geng*, Ting Zhang*, Zhigang Zhao*. Rapid Synthesis of Sub-5 nm Sized Cubic Boron Nitride Nanocrystals with High-Piezoelectric Behavior via Electrochemical Shock. Nano Lett., 2017, 17, 355–361.


image.png

Abstract

        A key challenge in current superhard materials research is the design of novel superhard nanocrystals (NCs) whereby new and unexpected properties may be predicted. Cubic boron nitride (c-BN) is a superhard material which ranks next to diamond; however, downsizing c-BN material below the 10 nm scale is rather challenging, and the interesting new properties of c-BN NCs remain unexplored and wide open. Herein we report an electrochemical shock method to prepare uniform c-BN NCs with a lateral size of only 3.4 ± 0.6 nm and a thickness of only 0.74 ± 0.3 nm at ambient temperature and pressure. The fabrication process is simple and fast, with c-BN NCs produced in just a few minutes. Most interestingly, the NCs exhibit excellent piezoelectric performance with a large recordable piezoelectric coefficient of 25.7 pC/N, which is almost 6 times larger than that from bulk c-BN and even competitive to conventional piezoelectric materials. The phenomenon of enhancement in the piezoelectric properties of BN NCs might arise from the nanoscale surface effect and nanoscale shape effect of BN NCs. This work paves an interesting route for exploring new properties of superhard NCs.


Full Article:http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b04272