Single-crystalline β-Ni(OH)2 ultrathin nanosheets were synthesized via a simple electrochemical reaction of Ni electrodes with a mixed solution of NaCl, NaOH, and NH4Cl at room temperature. The average thickness of β-Ni(OH)2 nanosheets is in the range 1–15 nm, which can be readily tuned by changing the concentration of NaCl. The phase structure, composition, morphology, and thickness of Ni(OH)2 nanosheets were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The mechanism of the nanosheet formation is proposed as the selective adsorption of NH3 molecules on the (001) crystal face of β-Ni(OH)2 which suppresses growth in the [001] direction. Porous NiO ultrathin nanosheets were obtained by thermal decomposition of β-Ni(OH)2 nanosheets in air at 400 °C for 2 h. Gas sensing properties of NiO ultrathin nanosheets were investigated, and the sensors exhibited high sensitivity, low detection limit, and wide dynamic range for detection of formaldehyde.
Full Article:http://pubs.rsc.org/en/Content/ArticleLanding/2012/RA/c2ra22049k#!divAbstract